勾股定理的逆定理

回答
爱扬教育

2022-04-10

  • 相关推荐
勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。若c为最长边,且a2+b2=c2,则△ABC是直角三角形。如果a2+b2>c2,则△ABC是锐角三角形。如果a2+b2

扩展资料

  勾股定理逆定理的证明方法

  如图,已知在△ABC中,设AB=c,AC=b,BC=a,且a2+b2=c2。求证∠ACB=90°

  证明:在△ABC内部作一个∠HCB=∠A,使H在AB上。

  ∵∠B=∠B,∠A=∠HCB

  ∴△ABC∽△CBH(有两个角对应相等的两个三角形相似)

  ∴AB/BC=BC/BH,即BH=a2/c

  而AH=AB-BH=c-a2/c=(c2-a2)/c=b2/c

  ∴AH/AC=(b2/c)/b=b/c=AC/AB

  ∵∠A=∠A

  ∴△ACH∽△ABC(两边对应成比例且夹角相等的两个三角形相似)

  ∴△ACH∽△CBH(相似三角形的传递性)

  ∴∠AHC=∠CHB

  ∵∠AHC+∠CHB=∠AHB=180°

  ∴∠AHC=∠CHB=90°

  ∴∠ACB=∠AHC=90°

  勾股定理的证明方法

  做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像下图那样拼成两个正方形。

  发现四个直角三角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长为(a+b)的正方形;四个直角三角形和一个边长为c的正方形也刚好凑成边长为(a+b)的正方形。所以可以看出以上两个大正方形面积相等。可以列出公式为:a2+b2+4×1/2ab=c2++4×1/2ab,计算可得::a2+b2=c2。