由线段和差想到的辅助线

回答
爱扬教育

2022-04-08

  • 相关推荐
由线段和差想到的辅助线作法可以用截长补短法来画。截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。

扩展资料

  由线段和差想到的辅助线

  1、截长补短法

  由线段和差想到的辅助线作法可以用截长补短法来画。截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。

  2、倍长中线法

  如果出现图形中的中线,可以延长边上的中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,构造全等三角形,则对应角对应边都对应相等,把要证的结论恰当的转移,这种辅助线的作法叫做倍长中线法。

  3、构建三角形

  对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法放在一个三角形中证明。

  由线段和差想到的辅助线例题

  在△ABC中,AD为BC边上的中线,DE和DF分别平分∠ADB和∠ADC,求证BE+CF=EF。

  证明:延长ED至M,使DM=DE,连接CM,MF

  在△BDE和△CDM中,∵BD=CD,∠1=∠5,ED=MD

  ∴△BDE≌△CDM(SAS)∴CM=BE

  ∵DE和DF分别平分∠ADB和∠ADC

  ∴∠BDE=∠ADE,∠ADF=∠CDF

  又∵∠BDE+∠ADE+∠ADF+∠CDF=180°(平角)

  ∴∠EDF=∠ADE+∠ADF=90°

  ∴∠FDM=∠EDF=90°

  ∴FM2=DF2+DM2=DF2+DE2=EF2,即FM=EF

  在△CFM中,CM+CF>FM

  ∴BE+CF>EF