平面的三个公理三推论

回答
爱扬教育

2022-04-02

  • 相关推荐
公理:如果一条直线上的两点在一个平面内,那么这条直线就在此平面内。如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。过不在一条直线上的三点,有且只有一个平面。推论:直线与直线外一点可确定一个平面;?两条相交直线可确定一个平面;?两条平行直线可确定一个平面。

扩展资料

  平面的三个公理三推论

  公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

  公理2:如果两个平面有一个公共点,那么它们有并且只有一条通过这个点的公共直线。

  公理3:经过不在同一直线上的三点,有并且只有一个平面。

  根据公理3和公理1,可以得到以下三个关于平面的推论:

  推论1:经过一条直线和这条直线外的一点,有并且只有一个平面。

  推论2:经过两条相交直线,有并且只有一个平面。

  推论3:经过两条平行直线,有并且只有一个平面。

  什么是平面

  高中阶段的平面是什么?和你想象中的平面是一样的吗?

  在几何中所说的平面不仅仅是一个有限大小的平面,而是无限延伸,也就是不再仅仅只是肉眼可见的大小了。

  点、线、面之间的关系

  要研究点线面之间的关系,就需要先明白它们之间的关系。

  点与线之间的关系,就是属于的关系,线面之间的关系,就是包含的关系。