偏导数存在且连续是可微的什么条件
回答
爱扬教育
2022-03-16
- 相关推荐
若二元函数f在其定义域内某点可微则二元函数f在该点偏导数存在,反过来则不一定成立。若二元函数函数f在其定义域内的某点可微,则二元函数f在该点连续,反过来则不一定成立。二元函数f在其定义域内某点是否连续与偏导数是否存在无关
扩展资料
可微的充要条件:函数的偏导数在某点的某邻域内存在且连续,则二元函数f在该点可微。
判断可导、可微、连续的注意事项:
1、在一元的情况下,可导=可微->连续,可导一定连续,反之不一定。
2、二元就不满足以上的结论,在二元的情况下:
(1)偏导数存在且连续,函数可微,函数连续。
(2)偏导数不存在,函数不可微,函数不一定连续。
(3)函数不可微,偏导数不一定存在,函数不一定连续。
(4)函数连续,偏导数不一定存在,函数不一定可微。
(5)函数不连续,偏导数不一定存在,函数不可微。