正交矩阵唯一吗

回答
爱扬教育

2022-04-24

  • 相关推荐
不唯一。
即使二次型的矩阵的特征值都不相同,每个特征向量的k倍也都是对应特征值的特征向量,更不用说重特征值的情形。比如P=(α,β,γ)是有三个不同特征值对称矩阵的特征矩阵,那么P`=(3α,5β,7γ)同样也是该矩阵的特征矩阵。

扩展资料

  如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵。尽管我们在这里只考虑实数矩阵,但这个定义可用于其元素来自任何域的矩阵。正交矩阵毕竟是从内积自然引出的,所以对于复数的矩阵这导致了归一要求。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但也存在一种复正交矩阵,这种复正交矩阵不是酉矩阵。