三阶导数的几何意义

回答
爱扬教育

2022-02-07

  • 相关推荐
三阶导数的几何意义是原函数一阶导数的凹凸性。
所谓三阶导数,即原函数导数的导数的导数,将原函数进行三次求导,不代表该点的曲率,谈几何意义只能算代表原函数一阶导数的凹凸性。

扩展资料

  导数的特性之凹凸性:

  可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。

  如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。