数学之美读书心得

更新时间:2023-04-01 08:45:38 读后感 我要投稿

  • 相关推荐

数学之美读书心得

  心中有不少心得体会时,马上将其记录下来,这样可以不断更新自己的想法。怎样写好心得体会呢?下面是小编整理的数学之美读书心得,欢迎大家分享。

数学之美读书心得

数学之美读书心得1

  本书介绍了Google产品中涉及的自然语言处理、统计语言模型、中文分词、信息度量、拼音输入法、搜索引擎、网页排名、密码学等内容背后的数学原理。让我们看到了布尔代数、离散数学、统计学、矩阵计算、马尔科夫链等似曾相识的内容在实际生活中的应用。相比于其他数学题材书籍,吴军老师把抽象、深奥的数学方法解释得通俗易懂,书中同时引用了诸多的历史典故和人物介绍,给人以很多启发,也让人由衷感叹数学的简洁和强大。

  虽是数据专业毕业,但是才疏学浅,无力对数学的美进行阐述。仅就书中两个比较喜欢的地方发表一点不成熟的.见解,与诸位共勉。

  其一,在讲Google的搜素引擎反作弊时谈到做事情的两种境界“道”和“术”,术就是具体的做事方法,而道则是隐藏在问题背后的动机和本质。在术这个层面解决问题要付出更多的努力,有点类似于我们常说的“头疼医头,脚疼医脚”,暂时不疼了,过几天复发了,再去医治,如此往复,无法从根本上解决;而只有找到了致病原因,才能做到药到病除,根本治愈。本人之前参与过行内月终自动核对的研发,月终核对初期数据的不一致性只能靠数百业务人员人工核对数据差异,然后修改数据,每月1日都要加班加点,工作量很大,这是从术上解决问题。后来找到了产生差异的原因是会计核算时的利息调整造成的,把这些数据接过来进行相应冲减后差异就消失了,业务人员也不用来加班了,这才是从道上解决问题。

  其二,是在做中文网页排名时提到的从业界成功的秘诀之一:“先帮助用户解决80%的问题,再慢慢解决剩下的20%的问题。许多时候做事失败,不是因为人不够优秀,而是做事的方法不对。一开始追求大而全的解决方案,之后长时间不能完成,最后不了了之”。我们在做项目时也是一样,业务有时要的功能非常急,可能有些功能也实现不了(比如系统响应时间长、查询明细不能支持省行等)。这时我们就要将焦点关注在那些可以实现的80%的功能上,哪怕刚刚上线的系统界面丑点,操作复杂点,反应速度慢点,但是至少业务有可用的系统,剩下时间再去优化那剩下的20%。这样可以帮助我行抢占先机,在与同行业的竞争中取得主动。如果等待我们把所有的细节都搞清楚再动手开发,力求完美,那么很可能系统能够上线的时候业务已经不需要了。

  数学之美,也就是简单之美。希望大家能够喜欢数学,喜欢数学之美。

数学之美读书心得2

  我第一次看到这本书是在两三年前,当时看的是电子书,虽然没太仔细看,但是第一次近距离了解到这些互联网应用背后的数学原理。

  前段时间,我在同学的桌上看到了《数学之美》的纸质书,就向他借来读。虽说"书非借不能读也",但实际上借了书也没能好好读,断断续续读了有一个月才读完。

  由于工作背景的缘故,吴军博士的这本书主要内容集中在语言识别和搜索领域,但这丝毫不妨碍它确实反映了很多共同的道理。我总结了几点供大家探讨。

  1. 简单就是美

  欧拉公式,最美的数据公式之一。

  虽然在大家的眼里,数学是一门深奥的学科,但是很多数学规律却能用非常简单的公式表示出来。我想"简单却非常有用"或许就是数学之美的内涵吧。

  书中作者给了很多"简单却非常有用"的例子,比如简单的布尔代数就是搜索引擎的数学基础;比如助Google一举逆袭成为搜索老大pagerank算法就是矩阵乘法迭代结合TF-IDF公式;地图导航搜索就是简单的动态规划;统计语言模型可以轻松解决看似难度、复杂度超高机器翻译、语音识别。

  数学的精彩之处就在于简单的模型可以干大事。从本质上讲,数学的思维方法就是抽象与简化。简单的模型怎么来?靠的是先抽象,后简化。对于复杂的问题,往往可以通过抽象,然后用数学模型来描述它。选择了合理的模型就成功了一半。但是有了模型,往往模型看着简单,但求解比较困难。这就需要合理假设继续简化,或者说通过增加合理的假设条件来简化计算。以书上提到的马尔科夫链为例,虽然公式的求解非常困难,但是一旦加上适当的假设,问题就一下子简化了非常多。

  所以,针对纷繁芜杂的现实情况,我们一定要能时刻准备着把复杂问题简单化,一定要做到大胆合理假设,尽可能的简化问题,抓住其主要矛盾,先用很小的`代价解决大部分的问题,剩下的部分再分步解决。

  2. 透过现象看本质

  作者说到,技术分为术和道两种,具体的做事方法是术,做事的原理和原则是道。技术容易学,但也容易落伍,所以追求术的人一辈子工作很辛苦,只有掌握了道的本质和精髓才能永远游刃有余。真正做好一件事没有捷径,需要一万小时的专业训练和努力。

  道是什么?道实际上就是方向,就是判断。

  我想有些领导之所以成为优秀的领导,是因为他们掌握了道,反而对具体的术不那么关注。

  举个书上的两个例子,都是关于搜索的:一个例子是搜索的本质是什么?自动下载尽可能多的网页;建立快速有效的索引;根据相关性对网页进行公平准确的排序。另一个例子是搜索引擎作弊的本质是什么?是在网页排名信号中加入了噪声,因此反作弊的关键是去除噪声。

  所以,我们在工作的时候,要善于理解事物的原理与本质。要先回答是什么、为什么?最后才是怎么做。再比如,在学习某个软件或某项技术时,就需要先掌握它的工作原理与工作机制,以便于我们判断其适用的场景和不适用的场景,而不是先去熟悉怎么用它。

  3. 循序渐进、逐步演化

  书上对自然语言处理着墨很多。最初的自然语言处理是基于规则的句法分析,但是一段时间过后,人们发现句法分析的准确率很难提升。正当句法分析派走投无路的时候,统计语言模型出现了,而且越走越顺,很快就把句法分析派远远抛在了后面。问题就来了,那为什么最开始科学家们不直接研究统计语言模型?答案当然是不能,原因是时机还不成熟,因为统计语言模型所需要基于的大数据量的语言库还没有,大规模并行计算的能力还不够。同样的,统计语言模型就是最好的吗?当然是不尽然,科学家们现在开始研究基于深度学习的自然语言处理,相信不久的将来,语言识别、机器翻译会有另外一个质的飞跃。

  我们做什么事情都不可能是一蹴而就,一步到位,想毕其功于一役的往往最后的结局都是失败的。

  对我们而言,不管是架构规划也好、系统建设也好、管理工作也好,更是需要找准突破口,循序渐进,逐步演化。当然,我们也不能固步自封、墨守成规。

数学之美读书心得3

  在网上看到有人推荐吴军博士的《数学之美》,尽管我从事社会科学研究,但对数学的推崇一直如此,所以买来一读,我的真切体验正如吴军博士在书的后记中所说,把自己“境界提升了一个层次”。

  那么,对我而言,到底提升了什么境界呢?

  首要的肯定是思想境界。在未读这本书之前,我知道对于这个世界的事件形成的信息集合,人类只有两种方式可以表达,一个是数字,一个是语言。整个实数的集合是无穷个,而且每个数字都是唯一的;整个世界中的事件也是无穷个的,而且每个事件也时独一无二的,这样数学中的数字集合与世界中的事件集合就构成一个一一对应的关系,所以研究数字之间的关系,实际上就是在研究世界中事件之间的关系。语言中的概念和世界中的事件之间也是可以构成一个对应关系的,但问题是,语言中概念的集合是有限的,所以它和数字集合的对应显然只能是部分对应。

  计算机科学的发展,人类需要把语言处理成数字,因为计算机只能识别数字信号,所以“语言的数字化”成为计算机产生以来发展最快、而且最有创新性的领域,而许多华人科学家成为了这个领域的顶尖专家,如李开复,吴军博士是卓越的科学家之一。至此我才感到,在计算机主导的世界中,信息化就是数字化,而最难的数字化、也是最有成就的数字化,就是对人类自然语言的数字化,因为人类的信息几乎100%是用语言承载、传播的,计算机要与人对话,变成智能化的机器,首先要解决的就是语言的数字化问题。但我们在电脑上自如地输入文字时、或者拿着手机通话时,我们跟本没有意识到,那些卓越的语言科学家,早已经把我们的语言,转化成数字信号,通过输入、处理、解码的方式,让我们无障碍地联络、工作。

  我似乎感到,语言与数字的关系,就是人与自然关系的接口。套用古希腊毕达哥拉斯学派的观点,加上我的理解,即是,数是万物的本原,语言是人的本原!

  吴军博士似乎也在提升我对方法的认识境界。科学研究的思考方式,习惯遵循本质、规律、连续性思维,在语言学研究的早期,人类为了让计算机识别语言,采用建立语言规则和语言规则数据库的办法,但最终以失败告终(20世纪50—70年代),70年代后科学家采用了语言统计模型,研究取得了突飞猛进。语言统计模型的胜利,再一次证明了宇宙量子模型的信念,世界是不连续的随机性的粒子构成,人类数千年文明进化出来的语言系统,就是动态的随机概率事件。其二,物理思维再也难逃牛顿的经典本质思维方法,即找寻到百分之百确定性的规律,而信息论思维是研究如何把握不确定性现象,利用概率统计是不二法门。其三,语言本质上就是信息传播,只有从通信模型视角才能真正理解计算机的功能,对语言的编码、处理、传输、解码是计算机的强项,计算机是永远不可能理解语言的意思的。

  在《数学之美》中,吴军博士对他的老师、师兄弟、同事的经历、掌故进行了叙述,让我们了解到这些世界一流的学科家、技术精英们的'为人处世品质、鲜明个性、科学素养及其管理风格。例如贾里尼克对博士生的严酷淘汰,马库斯对学生的宽宏大度,但我感到他们有一样东西是共同的,就是对科学创造、顶尖人才的识别和器重,甚至是无条件的包容。如此为人的境界才是根本,因为伟大的科学创造毕竟是人做出来的,只有崇高的人文精神之下才能造就顶尖的人才、一流的科学和技术。

  观国内的学说界,官风盛行、人情充斥,与这些一流学说群对科学创造的赏识、对个性人才的包容,对科学探索的热诚,可谓相去甚远。

  看来,我们只能寄希望于年轻一代,但愿吴博士的《数学之美》,能让我们的学子们,初步体验到科学精英们卓越的才智与情怀。

数学之美读书心得4

  近来,我通过中国大学MOOC的慕课《数学建模》获悉一部叫《牛津通识读本》的新出版科普系列。同时购入的有六本——《数学》《法律》《佛学概论》等。由于告知该书的慕课是数学课,我首先阅读的是《数学》。

  令我意外的是,本系列的书每本篇幅都短小精悍得让人愉悦(英文类书系列名就叫A Very ShortIntroduction)。就这本16开大小的《数学》中,有实际内容的只100页左右,剩下的有数十多页附注/答疑,与及100多页的英文原稿(原书作者高尔斯是英国学者)。本书内容质量非常高,并未使『西方当代学科科普』这个标签失色。再考虑到其篇幅如此短小,看来,以后为非理工科班出身的青年们推荐数学科普书,就不必只记得伊恩·斯图尔特与马丁·加德纳了。

  虽然这是数学科普,但作者可深知读者心。西方作者所著的.数学科普,一向都很能熟练地脱公式脱符号讲问题。与同类书籍比较之下,本书还有个小小的特点:其章节叙述顺序,既不硬从数学史(人类认知史)的流程,也不完全顺应个体认知心理学(教育学)的顺序。开篇破题他选的议题是『数学模型』,非数学专业学生最能适应的一种破题点;然后第二章紧紧承接主题『模型化』,开谈『抽象化』。这个过程的叙述行云流水。我感觉作者很懂怎样说该说的、省去不必说的、跳过不能说的。

  第二章《数与抽象》中,作者在引入复数时,首先不能免俗地做了其他科普书差不多的工作:-1的开平方根是复数的定义blabla;然后,他将议题转入更接近上游本质的、但也许常人可能也会想过的问题:形式与实在的关系。

  不是说『-1的开平方根』是复数单位i吗?但似乎有两个数的平方等于-1啊(也即i与-i),到底哪个才是正宗的『复数单位』?如果说i是嘛,那么凭什么-i不是?给我讲清楚啊——对吧?我猜,每个人在其漫长的人生中,都曾经想问过这类问题吧:『为嘛数变量用abc、角变量用αβγ』『为嘛求导符用的是一个点』『为嘛积分符像条蛇』『为嘛积分式里有个d』诸如此类。这些问题并不无聊也不白痴,只是常人很难给出有意义的回答而已;它们中的每个往往都蕴含着16世纪数学大师们的智慧精华。当然,本书没有解答所有这类奇离古怪的问题(这不是《十万个为什么》)。在本书里,作者做的是教授课间做的那种事——随便跟好奇的学生聊聊天,证明过程少说了个『在这个条件下』待会再补上。上面提到的『i与-i哪个才是复数单位』这个议题,这段简短的讨论,同时也扮演了下一章《证明》的引子这个角色。

  进度到第三章《证明》结束之后,对读者而言,或许就只剩一个小时的阅读时间而已了。后面的章节,议题越来越抽象(空间、维度、距离、无穷等),正要抵达最有趣的部分(集合论)时,突然话锋一转,谈起了与抽象几乎相对的另一端:计算理论与数论;然后,本书的主体竟在此突然收官。看来,作者多多少少还保持了清醒,未过度狂热,未打算将每个有趣的命题都灌到读者脑里。在我看来,那种『X猫X气三千问』的大杂烩式科普其实是很不人道的。大家和我一样都读过一遍又一遍的七桥问题与雪花曲线,没必要再来一次了。这些老生常谈的话题,在本书里各只占了一页的篇幅。太好了。

数学之美读书心得5

  《数学之美》,一个从事多年工作的谷歌研究员眼中的数学。令我大饱眼福的是,大学里面的数学知识竟能如此广泛运用到了计算机行业中。

  在语音识别、翻译,还有密码学领域,有着许多基于概率统计的模型和思想。当然,贝叶斯公式是基础,应用到隐含马尔科夫链模型,神经网络模型。

  在搜索中,一些相关性的计算,无不用到了概率的知识。在新闻分类中,用到了一些有关矩阵特征值、相似对角化的知识。当然,在图像处理方面,矩阵变换可谓是无处不在。另外,在识别方面,有一些通信模型,涉及到了信道、误码率、信息熵。

  最近刚开学也没什么事,所以就想随便找几本书看一下,但最好别是那种太艰深晦涩的书。8月份一直到现在,吴军写的这本12年5月出版的《数学之美》一直盘踞京东、亚马逊等各大网上商城科技类图书的榜首,当然,还有早些时候出版的《浪潮之巅》也排在很靠前的位置。心想市场的力量应该能帮我挑出好书吧,于是就从图书馆借了一本来,一直到今天晚上把它给看完了。

  因此想写一点东西来总结、反思一下,反正刚开完班会也没什么事干。

  写在前面的建议:如果你不讨厌数学的话,强烈推荐这本书,网上也可以下到电子版,不过阅读感觉上还是很不一样的。

  废话就不多说了,《数学之美》其实是一本科普类的读物,所面向的是接受过普通高等教育的人,完全不需要在特定领域有很深的造诣就可以看懂,大概懂一点线性代数、概率统计、组合数学、信息论、计算机算法、模式识别最好(虽然列举了这么多,其实有些不懂也没关系……),所以尤其适合信科的人看。内容大部分是和人工智能、计算机相关的,这并非我所学的专业,但作者比较擅长将看似复杂的原理用简明的语言表达出来,所以可读性还是很好的。

  吴军是清华大学毕业的,之前任职于Google,后来到了腾讯,这些文章都是发表在Google黑板报上的,后来经过了重写,所以网上下载的和书本内容有所差异。由于吴军本人是研究自然语言处理和语音识别的,所以统计语言模型的东西可能会多一点,不过我觉得这丝毫不妨碍全书数学之美的展现……感觉收获还是挺多的`,知识上的有一些,但更多还是思维方式上的。作者举了很多例子试图让人明白很多看似复杂的高科技背后,基本原理其实是出乎意料简单的(当然,必须承认第一个想到这些方法的人还是非常了不起的……)。比如高准确率的机器翻译,看上去好像是计算机能够理解各国语言,隐藏在背后的却是很多具有大学理科学历的人都非常清楚的统计模型和概率模型;再比如拼音输入法的数学原理,早期的研究主要集中在缩短平均编码长度,比如曾经流行一时的五笔输入法,而现今真正实用的输入法却是有很多信息冗余、编码长度比较长的拼音输入法,作者从信息论和市场的角度做了简单的阐述;又比如新闻的自动分类,许多非IT领域的人可能会认为计算机可以读懂新闻并进行分类,而实际上只是特征向量的抽取、多维空间中向量夹角的计算,非常非常简单,但凡学过一点线性代数的人绝对是一看就懂的……当然,完美的实现还需要考虑很多细节和现实的情况,但这并不是这本书所关注的地方,数学之美在于其简洁而不是繁琐。

  除了对于具体信息技术的剖析之外,作者还花了很大篇幅来讲一些杰出人士的成长过程,特别是把这些人的成长经历和中国学生的成长经历作对比。虽然作者并没有明说,但字里行间多少流露出对于中国高等教育以及很多中国企业的批评,一是教育的功利性,缺乏宽松的独立思考的环境,即使学了一堆理论也难有用武之地,自然也就缺乏创新性的成果;二是中国企业的短视,大部分都不舍得在新框架开发上投资,而是坐享学术界和国外企业的研究成果。

  总结一下呢,《数学之美》事实上不能带给你编程能力的提升,也没法让人的数学水平有显着的提升,但它在很大程度上让你跳出教科书式的繁琐细节的束缚,能够从更宏观的角度来思考信息世界背后的数学引擎的运行原理,让人明白看似很高级、复杂的东西背后其实并不如我们所想象的那样复杂,而我们所学的“枯燥”的数学真的可以“四两拨千斤”,改变亿万人的生活。

数学之美读书心得6

  这本书一共3章,主要介绍了这些数学方法:统计方法、统计语言模型、中文信息处理、隐含马尔科夫模型、布尔代数、图论、网页排名技术、信息论、动态规划、余弦定理、矩阵运算、信息指纹、密码学、搜索技术、数学模型、最大熵模型、拼音输入法、贝叶斯网络、句法分析、维特比算法、各个击破算法等。从第一章开始其明了幽默的语言就深深的吸引了我,让我觉得如果早一点看这本书,也许数学之于我就是另一番天地。

  第一章里作者从原始人类的通信方式开始入手,人类最早利用声音进行的通信依赖于开篇给出的"编码—传输—解码"的基本原理,指出原始人的通信方式和今天的通信方式没什么不同,这世界上近现代最普遍的原理大部分都在人类发展的历史上被无意识的使用着。

  第六章信息论给出了信息的度量,它是基于概率的,概率越小,其不确定性越大,信息量就越大。引入信息量就可以消除系统的不确定性,同理自然语言处理的大量问题就是找相关的信息。信息熵的物理含义是对一个信息系统不确定性的度量,这一点与热力学中的熵概念相同,看似不同的学科之间也会有着很强的相似性。事务之间是存在联系的,要学会借鉴其他知识。

  这本书里也能找到不少在学的课程知识,如大学专业课里,数电总是要比模电简单不少,而自然界里大部分的信号都属于模拟信号。所谓模拟信号,是指从时间和数值两种维度上看来都是连续变化的信号。在实际电路中,模数转换是一个很重要的过程,将预处理的模拟信号经过模数变换为数字信号,然后进行数字信号处理。而数字化处理有很多优点,比如功能强大、抗干扰能力强、易于传输等。

  简而言之,如果没有数学,就没有数字信号处理和传输的概念,而数字信号传输在当下大规模的集成电路里是必不可少的,这是通信成功的基本要求。

  作者把生活中遇到的复杂的问题,以简单清晰,直观的模型或者公式展现出来。我们可能过于注意生活中的种种奇妙现象,往往忽略了追求其理论逻辑的演绎,而这,也是大部分问题的.主要根源。

  罗素曾经说过:"数学,如果正确地看,不但拥有真理,而且也具有至高的美";爱因斯坦也曾说过:"纯数学使我们能够发现概念和联系这些概念的规律,这些概念和规律给了我们理解自然现象的钥匙。"数学在所有科学领域起着基础和根本的作用。"哪里有数,哪里就有美"。在这里,我也想把《数学之美》真诚推荐给每一位对自然、科学、生活有兴趣有热情的朋友,不管你是从事职业,读一读它,会让你受益良多。

  吴军老师在《数学之美》中提到:"这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余"。回到我们日常的生活中,需要学习的东西、技术太多太多,如果一味地只为去追技术的脚步,那么我们也会很累很累。然而基本的原理却是没有怎么变化的。只见森林,不见树木,难免迷失;站在高处向下看,也许我们一直看不到底,但是站在底处却是可以看见底的。

数学之美读书心得7

  数学用在模型上而不是现实世界中,需要抽象思考出模型,即数学对象是其所做。数系扩充中,复数i并没有比无理数根号2更特殊的地方,因为它们作为抽象的数学构造,如果充分自然,则必能作为模型找到它们的用途。实际上正是如此。

  数学中有个根本性的重要事实:数学论证中的每一步都可以不断地分解成更小更清晰有据的子步骤,但是这样的过程最终会终止。原则上,最终会得到一条非常长的论证,它以普遍接受的公理开始,仅通过最基本的逻辑原则一步步推进,最终得到想要求证的结论。所以,任何关于数学证明有效性的争论总是能够解决的.。争论在原则上必然能够解决这一事实使数学作为一个学科是独一无二的。在这里,公理系统的主要问题不是真实性,而是自洽性和有用性,即数学证明就是由特定前提能够得出特定结论,而不考虑该前提是否正确。

  我不清楚这一“根本性的重要事实”在现实中的使用范围有多大,但由此可以聊一点别的问题。现实中,如果甲对事情有A观点(或说价值观),乙有B观点,并为此争执。有下面几种情况:

  1、在上述的范围之外,即没有定论。

  2、有定论,但是双方都没有给出足够的证据证明和反驳。

  3、有定论,一方给出了足够的证据(或者反驳理由),因为表达能力导致表述不清晰而没有说服对方。

  4、有定论,一方给出了足够的证据(或者反驳理由),因为对方理解不够或理解偏差导致没有被说服。第234条与这几项有关:知识量,表达能力,理解能力,对外界的认知和自我认知。其中语言本身的局限性会一定程度上影响表达和理解,认知能力是一项综合的要求很高的能力。“评论”这件事就是个很合适的例子。如果说创造更需要的是才气,那么评论更需要的就是能力。但是,无论双方是否知道有无定论,很多情况下需要陈述不少或很多证据或反驳理由,由第234条可知人与人交流的效率很低,并且可能伴随一些冲突。若考虑到一些人的利益因素等,交流会更复杂。

【数学之美读书心得】相关文章:

四季之美05-22

系统之美读后感06-19

语文白骨之美阅读答案04-25

简单之美阅读训练及答案05-08

柔和之美小升初作文800字06-18

春之美小升初作文800字06-18

读散文集飘零何处归有感--平淡之美06-19

《谈美》读书心得02-22

劳动节黑板报资料:劳动之美06-18